The Efficacy of ecofriendly biocontrol Azotobacter chroococcum and Lac-tobacillus rhamnosus for enhancing plant growth and reducing infection by Neoscytalidium spp. in fig (Ficus carica L.) saplings
Journal of Kerbala for Agricultural Sciences,
2019, Volume 6, Issue 1, Pages 16-25
Abstract
The aim of the research was to use the environment-friendly agents to reduce the effect of Neoscytalidium dimidiatum and Neoscytalidium novaehollandiae, that cause dieback and blacking stem on several agricultural crops. This disease was the first record on fig trees in Iraq by this study and registered in GenBank under accession numbers : MF682357 , MF682358, in addition to its involvement in causing dermatomycosis to human. In order to reduce environmental pollution due to chemical pesticides, two antagonistic bacteria Lactobacillus rhamnosus (isolated from yoghurt) and Azotobacter chroococcum (isolated from soil) were used to against pathogenic fungi N. dimidiatum and N. novahollandiae. The in vitro tests showed that both bio-agents bacteria were highly antagonistic to both pathogenic fungal reducing their radial growth to 44 and 75% respectively . Results of greenhouse experiments in pot showed that both A. chroococcum and L.rhamnosus decreased severity of infection by pathogenic fungi and enhanced plant health and growth. All the growth parameters of fig trees including leaf area, content of total chlorophyll, catalase and peroxidase activities were significantly higher compared to infected untreated control.
Keywords:
References :
- Abdullah, S. K., Al-Samarraie, M. Q., & Al-Assie, A. H. (2015). Fungi associated with grapevine (Vitis vinifera L.) decline in middle of Iraq. Egypt. Acad. J. Biolog. Sci.(G. Microbiology), 7(1), 53-59.
- Agrios, G. N. (2005). Plant pathology 5th Edition: Elsevier Academic Press. Burlington, Ma. USA, 79-103.
- Al-Morad, N. Y. (2013). The role of cellulase and pectinase in apricot canker caused by Hendersonula toruloidea and Phiaoacremonium aleophillium. Journal of Agricultural Science and Technology. A, 3(2A), 146.
- Al-Saadoon, A. H., Ameen, M. K., Hameed, M. A., Al-Badran, A., & Ali, Z. (2012). First report of grapevine dieback caused by Lasiodiplodia theobromae and Neoscytalidium dimidiatum in Basrah, Southern Iraq. African Journal of Biotechnology, 11(95), 16165-16171.
- Alshawa, K., Beretti, J. L., Lacroix, C., Feuilhade, M., Dauphin, B., Quesne, G., ... & Bougnoux, M. E. (2012). Successful identification of clinical dermatophyte and Neoscytalidium species by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Journal of Clinical Microbiology, 50(7), 2277-2281.
- Bakhshizadeh, M., Hashemian, H. R., Najafzadeh, M. J., Dolatabadi, S., & Zarrinfar, H. (2014). First report of rhinosinusitis caused by Neoscytalidium dimidiatum in Iran. Journal of medical microbiology, 63(7),1017-1019.https: // doi. org /10.1099/jmm.0.065292-0.
- Chuang, M. F., Ni, H. F., Yang, H. R., Shu, S. L., Lai, S. Y., & Jiang, Y. L. (2012). First report of stem canker disease of pitaya (Hylocereus undatus and H. polyrhizus) caused by Neoscytalidium dimidiatum in Taiwan. Plant disease, 96(6), 906-906.https://doi.org/10.1094/PDIS-08-11-0689-PDN.
- da Silva, R. T., Guimarães, D. A., Camargo, Z. P., Rodrigues, A. M., Maceira, J. P., Bernardes-Engemann, A. R., & Orofino-Costa, R. (2016). Cutaneous murine model of infection caused by Neoscytalidium dimidiatum: a preliminary study of an emerging human pathogen . Sabouraudia, 54(8) , 890 - 898.
- Dionne, B., Neff, L., Lee, S. A., Sutton, D. A., Wiederhold, N. P., Lindner, J., ... & Jakeman, B. (2015). Pulmonary fungal infection caused by Neoscytalidium dimidiatum. Journal of Clinical Microbiology, 53(7), 2381-2384.doi:10.1128/JCM.00206-15.
- Ezra, D., Liarzi, O., Gat, T., Hershcovich, M., & Dudai, M. (2013). First report of internal black rot caused by Neoscytalidium dimidiatum on Hylocereus undatus (pitahaya) fruit in Israel. Plant disease , 97(11), 1513-1513. https: // doi.org/10.1094/pdis-05-13-0535-pdn.
- Fatima, Z., Saleemi, M., Zia, M., Sultan, T., Aslam, M., Rehman, R., & Chaudhary, M. F. (2009). Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. African Journal of Biotechnology, 8(2).
- Fernandes, I., Alves, A., Correia, A., Devreese, B., & Esteves, A. C. (2014). Secretome analysis identifies potential virulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline. Fungal Biology, 118(5-6), 516-523.
- Hassan, W. A., Haleem, R. A., & Hassan, P. H. (2011). Effect of heat-stress predisposition on the development of sooty canker caused by Neoscytalidium dimidiatum (Penz.) Crous and Slippers. Acta Agrobotanica, 64(4).207–212.
- Hillel,D.(2005) Plant Growth Promoting Bacteria. Elsevier, Oxford, U. K.,:103-115.
- Jam, J. P. and Pathak, V.N.(1970) Anti fungal activity in leaf extract of certain plants. Labder. Journal of Science and Technology. Vol 8 pp: 158-60.
- Jiménez Díaz, R. M., & Trapero Casas, A. (1985). Use of fungicide treatments and host resistence to control the wilt and root rot complex of Chickpeas.
- Larkin, R. P. (2004). Development of integrated biological and cultural approaches for control of powdery scab and other soil borne disease. USDA, ARS, New England Plant. Soil, and Water Lab Univ. of Maine, Orone, ME O, 44469.
- Madrid, H., Ruíz-Cendoya, M., Cano, J., Stchigel, A., Orofino, R., & Guarro, J. (2009). Genotyping and in vitro antifungal susceptibility of Neoscytalidium dimidiatum isolates from different origins. International journal of antimicrobial agents, 34(4), 351-354. https: // doi. Org / 10. 1016/ j. ijantimicag. 2009.05.006.
- Mali, G. V., & Bodhankar, M. G. (2009). Antifungal and phytohormone production potential of Azotobacter chroococcum isolates from Groundnut (Arachis hypogea L.) rhizosphere. Asian J Exp Sci, 23(1), 293-7.
- Montealegre, J. R., Reyes, R., Pérez, L. M., Herrera, R., Silva, P., & Besoain, X. (2003). Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electronic Journal of Biotechnology, 6(2), 115-127.
- Odibo, F. J. C., Okafor, N., Tom, M. U., & Oyeka, C. A. (1992). Purification and some properties of a starch debranching enzyme of Hendersonula toruloidea. World Journal of Microbiology and Biotechnology, 8(2), 102-105.
- Oren, Y., Sadowsky, A., Gefen, D., Solel, Z., & Kimchy, M. (2001). Scytalidium wilt of citrus. European Journal of Plant Pathology, 107(4), 467-470.
- Pétriacq, P., Stassen, J. H., & Ton, J. (2016). Spore density determines infection strategy by the plant pathogenic fungus Plectosphaerella cucumerina. Plant Physiology, 170(4), 2325-2339.
- Philips, A. J. L., Alves, A., Burgess, T., Barber, P., & Groenewald, J. Z. (2006). Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol, 55, 235253Eyberger.
- Polizzi, G., Aiello, D., Vitale, A., Giuffrida, F., Groenewald, J. Z., & Crous, P. W. (2009). First report of shoot blight, canker, and gummosis caused by Neoscytalidium dimidiatum on citrus in Italy. Plant Diseases, 93(11), 1215-1215.https://doi.org/10.1094/PDIS-93-11-1215A.
- Rojanavanich, V., Yoshiike, T., Tsuboi, R., Takamori, K., & Ogawa, H. (1990). Purification and characterization of an extracellular proteinase from Hendersonula toruloidea. Infection and immunity, 58(9), 2856-2861.
- Tan, D. H., Sigler, L., Gibas, C. F., & Fong, I. W. (2008). Disseminated fungal infection in a renal transplant recipient involving Macrophomina phaseolina and Scytalidium dimidiatum: case report and review of taxonomic changes among medically important members of the Botryosphaeriaceae. Medical Mycology, 46(3), 285-292.
- Wood, T. M., & Bhat, K. M. (1988). Methods for measuring cellulase activities. In Methods in enzymology (Vol. 160, pp. 87-112). Academic Press.
- Yi, R. H., Mo, J. J., Wu, F. F., & Chen, J. (2015). Fruit internal brown rot caused by Neoscytalidium dimidiatum on pitahaya in Guangdong province, China. Australasian Plant Disease Notes, 10(1),13.https: //doi.org/ 10.1007 / s13314 - 015-0166-1.
- Article View: 117
- PDF Download: 42